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1. Introduction

Stochastic dominanci provides a way of analyzing risky decisions when a
decision agent's von Neumann-Morgenstern (1947) utility function u is not
fully known but is presumed to be in a class U of real-valued functions defined
on a consequence space X. When p and q are probability measures on a suitable
algebra of subsets of X, we sometimes say that p stochastically dominates q
with respect to U if fu(x)dp(x) > fu(x)dq(x) for all u € U for which the
expected utilities are finite.

Although stochastic dominance is relevant whenever decision alternatives
are described by probability measures, its most popular use involves situations
in which X is a set of real numbers with x preferred to y when x > y. This
context is emphasized in the introduction to stochastic dominance given by
Fishburn and Vickson (1978) and will be the context used for the present paper.
Definitions of various degrees of stochastic dominance in the real X setting
can be given without explicit mention of U classes, and I will follow this
approach here.

My purpose is to establish a general connection between nth-degree
stochastic dominance and the first n moments of probability measures whose
supports are bounded below, for all n € {1,2,...}. It will be assumed that
the measures are countably additive and that their supports are bounded below
by 0. The corresponding distribution functions F,G,... will be taken to be
continuous from the right with F(x) = 0 for all x < 0 and F(x) + 1 as x + =,

The basic definitions and main theorem are presented and discussed in the
next section where the main theorem is observed to follow from two auxiliary
theorems. Proofs of the latter theorems are given in the final two sections.
These proofs are based solely on the distribution functions and will not involve

utility classes.




2. Definitions and Theorems

Let F be the set of all right-continuous distribution functions on the
real line with F(x) = 0 for all x < 0 for each F € F. For each F € F let

F! = F and recursively define

Fn+l(x) = TFn(y)dy for all x > 0 and n € {1,2,...}.
0

Nonstrict (->-n) and strict (>n) nth-degree stochastic dominance relations are

then defined on F as follows:

F> G 1iff F'(x) <G (x) for all x € [0,®),

F>nciffF#GandF3nG.

These relations are transitive and increasingly more inclusive: 31 c>cC..
and >l (= >2C... where C denotes proper inclusion. Utility classes that are
congruent with the first few stochastic dominance orders are presented in
Fishburn and Vickson (1978, pp. 102-113). For example, F > G iff fu(x)dl"(;:) >
J'u(x)dG(x) for all nondecreasing u on [0,») for which the expectations exist,
and F 32 G iff fudF 2> JudG for all nondecreasing and concave u on [0,®) for
which the expectations exist. The corresponding theorems for (>1,>) and (>z,>)
respectively involve strictly increasing u and strictly increasing-strictly
concave u. Congruent utility classes for the third-degree relations are the
subsets of the second-degree classes in which first derivatives exist and are
convex (2_3) or strictly convex (>3). Although it is traditional to define

F 2, G 1ff F'(x) < 6’(x) for all x and the mean of F is as great as the mean

of G (e.g., [Whitmore, 1970], [Fishburn and Vickson, 1978]), we shall see that

the condition on the means is redundant in the present formulation.




T P R N

The moment sequence for F € F is u(F) = (u;,u;,u;,...) where u; =
JﬁF(x) = ] and u; = fxndF(x) for each n > 1. The part of this sequence
through the nth moment will be denoted as un(Fﬁ = (u;,...,u;). Our main
theorem will be based on binary relations >* on {u(F): F € F} defined

lexicographically on the basis of un as follows:

k-1 k

k
Hp

>DE g

u(F) >; u(G) 1iff un(F) ¥ un(G) and (-1)

for the smallest k for which u; # “:‘

For example, u(F) A u(G) 1iff u; > ué, and u(F) o u(G) 1ff either u; > ué
or (u; = ué, ué < ué). Alternatively, u(F) >: u(G) iff either F has the
greacer mean or the means of F and G are equal and F has a smaller variance

than G.

Theorem 1. If F,G € F and the moments of F and G through order n are

finite, then u(F) >* u(G) 1f F > G.

For discussion purposes the next three paragraphs assume that the moments

involved therein are finite.
The n = 1 part of Theorem 1 says that if F >l G then the mean of F must

be greater than the mean of G. Equivalently, if u;.i ué then F cannot

strictly first-degree stochastically dominate G. This fact seems to be widely

known.

It appears to be less commonly recognized that F >2 G implies that either

L% >ué (in which case the inequality on second moments could go either way) or

(u; = ué, u; < ué). Parts of this result have been noted by Hanoch and Levy

(1969), Rothschild and Stiglitz (1970) and Fishburn and Vickson (1978, p. 78).

e
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For n = 3, Theorem 1 says that F >3'G entails either u; > ué or
(u; = ué. u; < ué) or (u; = ué, u; - ué, u; > ué). Although parts of
this have been noted by Whitmore (1970) and Fishburn and Vickson (1978,
pp. 78-82) for special cases, the complete result appears to be previously
unknown. In like manner, Theorem 1 for n > 4 appears to be new.

Since F >3 G implies u;‘g ué when these means are finite--and even
when one or both are infinite--our definition of >3 (°r433) is formally
equivalent to the traditional definition. It should be noted however that
upper-bounded definitions are not so simply related. In particular, if [0,b]
with b finite includes the supports of F and G then, as shown in Fishburn (1976),
it is possible to have u% < ué when F’(x).i G3(x) for all x € [0,b]. In this
case, when F¥(x) < G®(x) is specified only over an interval that includes the
supports of F and G, it is necessary to include the stipulation u;.Z ué in the
definition of F‘33 G if we want_>_3 to be congruent with the type of U class
mentioned in the opening paragraph of this section.

The proof of Theorem 1 can be based on the following two auxiliary

theorems that will be proved in the next two sections.

Theorem 2. 1f F,G € F, if F > G for some m € {1,2,...}, and if the

moments of F and G through order n + 1 > 1 are finite with u: = ug for

n+l n  nt+l

k-OJ““m,wm(dﬁu

Theorem 3. 1If F,G € F, if F >n G, and if the moments of F and G through

order n > 1 are finite with u? = ug for k = 0,1,...,n - 1, then (-l)n-lu;

n-1

> (~1) ug.

The latter theorem implies that un(F) = un(G) cannot be true when F >n G,

and the former theorem says that if F stochastically dominates G in the




.

n+1

nonstrict sense for any finite degree and if un(F) = 4, (G) then e 2
1
ug+l if n is even and u;+ £ ug+l if n is odd, provided that the moments

involved are finite. Theorem 1 follows immediately from Theorems 2 and

. * =
3: if F e G then F 2. G, hence either u(F) =8 u(G) or un(F) un(G) by
Theorem 2; since Theorem 3 rules out un(F) = un(G) we are left with u(F) >;

u(G).
3. Proof of Theorem 2

We begin with a lemma that leads to the proper sense of the inequality

in the conclusion of Theorem 2.

Lemma 1. For any H € F with finite moments through order n and for all

m>n>0and x >0 let

n X
k+ k, k
CRO kgo (-1) ‘@uﬂlx + y{ a- y/%)"dH(y) .

Then T _(H,x) = 0 iff H(0) = 1 and, for all other H € Fs T, p(H:X) > 0 if
’ ]

n is odd, and Tn m(H,x) < 0 if n is even.
9’

Proof. 1If H assigns probability mass 1 to y = 0 then (1) gives Tn m(H,x) =
-1+ 1= 0. Assume henceforth that H(0) < 1. When u: in the right hand side

x ®
of (1) is replaced by kadﬂ(y) + fykdﬂ(y), and (1 - y/x)m is expanded
0 x
binomially, we get

X m @ n
1,a®0 = JU T coXF)om e + I ) O (3o e
g 0 k=n+1 x k=0

X o
- ] An’m(z)dﬂ(y) +;[‘Bn’m(z)dﬂ(y)

1)

(2)




where the A and B terms are defined in context as the sums under the
integrals and z = y/x with z € [0,1] for A and z € [1,») for B. We consider
A and B in turn.

First, A (0) = 0 for allm > n > 0 and, since A _(z2) = (1 - z)ln -1,
n,m - 0,m

Ao m(z) < 0 for all z € (0,1]. Since
’

m(z)/dz = -mA (z) form >n>1 and z > 0,

An,m(z) i dAn n=1,m-1

it follows that A; m(z) > 0 for z > 0, hence by continuity and Al m(o) =0

that Al m(z) > 0 for all z € (0,1] and m > 1. Then A; ln(z) <0forz>0
’ b

and m > 2, so that A2 m(z) < 0 for all z € (0,1]. The obvious continuation
’

of this process gives

A (z) >0 for all z € (0,1] if n is odd,
n,m

An Ill(z) < 0 for all z € (0,1] if n is even,

along with An m(0) = 0.

For the B part we note first (e.g. [Feller, 1957, p. 61]) that Bn m(l) =
’
(_l)nﬂ(m—x) so that B
n n

In addition,

m(1) > 0 if n is odd, and Bn m(1) < 0 if n is even.

’ ’

B (z) = -m B (z) form >n>1and z > 1.
n,m n- 1 = =

1,M=

Since Bo lIl(z) = -1, this implies that B; m(z) >0 form > 1 and z > 1, hence

that B. (z) > O for all z > 1 since B. _(1) > 0. Then B” (z) < 0, hence
1,m = 1,m m

’ 2’

B, m(z) < 0 for all z > 1 since B2 m(1) < 0. The continuation of this process
’

shows that




Bn m(z) > 0 for all z € [1,») if n is odd,

Bn m(z) < 0 for all z € [1,») if n is even.
’

These conclusions along with those for A and the hypothesis that H has positive
probability mass on x > 0 then yield the final conclusions of Lemma 1 in view
of (2). Q.E.D.

For Theorem 2, suppose that F,G € F have finite moments through order

G for all k < n. Assume also

n+1>1 and that un(F) = un(G), i.e. u?

that F zm G for some m. Since 2m c > b for all m, select m > n with
F > ; G. Then, by the definition of > 61 and Fishburn (1976),

X X
Jx - »PaF@y) < [(x - y)"d6(y) for all x > 0.
0 0

Since un(F) = un(G), it follows that

Tn,m(G,x).Z T m(F,x) for all x > 0.

Suppose first that G(0) = 1 so that Tn m(G,x) = 0 by Lemma 1. Then
’

0> ’I'n m(F,x) for all x > 0. It follows that either F(0) = 1 and F = G, in
’

1

which case u;+ = u2+1 = 0, or that F(0) < 1, in which case Lemma 1 implies

that 0 > Tn m(F,x) for x > 0 and hence that n is even. But with n even,
’

(-1)n u;+l > (-1)n ug+l = 0 in the latter case. Hence the conclusion of

Theorem 2 holds if G(0) = 1.
Assume henceforth that G(0) < 1, in which case F(0) < 1 also. Then (3)
applies with neither term ever equal to zero according to the last part of

Lemma 1. We shall prove that

T _(F,x) u
lm —n-IE——-—— | —
T (GQX) un+1

X+ “n,m

(3)

(4)




which, in view of (3) and the final conclusions of the lemma, implies that

(-l)nu;+{3(-1fhg+l, as desired for Theorem 2. Since lim Tn m(H,x) =

’

-uﬁ + 1 =0, we differentiate the numerator and denominator of the left
hand side of (4) with respect to x in anticipation of using 1'Hospital's
rule. When m/x? is canceled from the numerator and denominator after the

differentiations have been completed, we get

n-1

X
(_1)k+1<m-1>uk+1/xk +'Jkl g y/x)m—lde(y)

dT o (Ex)/dx L & JoF

dT (G,x) /dx i n-1 B x _
e ! (-1)“*‘(“‘k‘>u‘(§+‘/x“ + Ja - 30" yde(y)
k=0 0

. (5)

If n = 0 then the numerator and denominator of (5) respectively approach

u; and ué as x > @ by the monotone convergence theorem (e.g., [Loeve, 1960,
p. 124]), and a single application of 1l'Hospital's rule shows that (4) holds.
If n > 1, then the numerator and denominator of the right hand side of (5)
both go to zero (-ué + u; and -ué + ué) as n > ®, In this case methods
similar to those used for Lemma 1 show that both parts of the right hand side
of (5) have constant nonzero sign. We then differentiate the numerator and

denominator of the right hand side of (5) and cancel (m - 1)/x? to get

n-2 X
kz (-l)kH(m;z)u:“/xk - J(l - y/x)" 2y2dr(y)
=0
| n-2 X =
ﬂ Z ('l)k+l<fiz>”g+z/xk + f(l i y/x)m~2y2dG(y)
i k=0 0

If n = 1 then (4) holds by two applications of 1'Hospital's rule since the limit

of the expression just written is u;/ué. If n > 1, we continue in the indicated




X

X
manner until we arrive at the ratio [(1 - y/x)m_n—lyn+ldF(y)/f(l - y/x)m-n_lyn+1

o 0
dG(y), whose limit is u;+l/ug+l. Hence n + 1 applications of 1'Hospital's

rule yield a gemeral verification of 4).

4. Proof of Theorem 3

Throughout this section we use the convention that t° = 1 when t = 0. 1In
anticipation of using the monotone convergence theorem later we shall first

prove

Lemma 2. Suppose H € F has finite moments through order n - 1 with n >z,

and 0 <y < x with x > 0. Then

n
D EN ) + [ DR R

k=1
n X

> (-1 aE(y) + ) (-1)“"‘*‘(:) ™ [ 22 Rama) ]
k=1 z=0

>0

Proof. We note first that

- n-k+1/n n-k k-1 e n-k/n-1 n-k-1
I (-1 (k) kuyy 'y =n l(zo(-l) ( X )ykuH ,

k=1
n X n-1 X
) (-1)“’1‘“(:) Ol ) (-1)““‘(";‘)yk J 2" 'an(z)
k=1 z=0 k=0 z=0
X
=-n [ (v - 2)" du(2),
2=0
J -
alB(y) = n | (v - 2)" dH(2) ([Fishburn, 1976]).

By the first two of these, the first inequality in the conclusion of Lemma 2

holds if and only if




10

k=0 z=0

n~1 b
n(—l)n[z (-l)n-k(n;l)yk{u;_k-l i J zn-k-ldﬁ(z)}]?_ 0,

which is true if and only if

n-1 o
Z (-l)k(nkl)yk J zn-k--ldﬂ(z).2 0.
k=0 z=x
(=]
But this is true since its left hand side equals J (z - y)n-IdH(z). By

z=x
the final two expressions in the opening sentence of this proof, the second

(> 0) inequality in Lemma 2 holds if

X
D-a J &~ 2™ an(2)] > o,
z=y

X
which is true since its left hand side equals nf (z - y)n—ldH(z). Q.E.D.
z=y

When dy is replaced by e’d a - e-y) in the following expressions, with
1- e-y a distribution function in F, Lemma 2 in conjunction with the monotone

convergence theorem shows that if u;-l is finite then

o n
DT RN+ ) DT (Dl Ry ey
y=0 k=1 .

n n v n-k+1/n kel n-k
= lim {(-1)" [ [nE%() + ] (D) (Dky " J 2" Fan(2) 14y},
X0 y=0 k=1 z=0

The expression within braces after lim reduces as follows:

n X
D™ e+ T D™ [ e ()
k=1 z2=9

=0 k=1 y=0

X n X
- <-1)“[J‘ (x = ) aHEG) + ] DR y““‘dn<y)]
y




X n n X
i (-l)n[f Z (—l)n-k ;:) xkyn-kdﬂ(y) + Z (-l)n-k+l(:)xk J yn-kdll(y)]
y=0 k=0 k=1 y=0

£ a
= | ylau(y).
y=o0

Therefore, when u;-l is finite,

o n
J ) + F (-1)“"‘“(“) W 5 gy = )RR
y=0 k=1 k B

ﬂ;:

Finally, as in the hypotheses of Theorem 3, suppose that F >n G and

that the moments of F and G through order n are finite with uk = ug for all

F
n n n n
k <n=-1. Then, since F (y) < G (y) for all y, and F (y) < G (y) in a non-

degenerate interval within [0,»), (6) shows immediately that (-l)nu; < (-1)n

11

(6)
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